Course Summary
Learn how to implement machine learning algorithms using Python in this comprehensive course. Gain hands-on experience with various techniques and tools to solve real-world problems.Key Learning Points
- Gain a strong foundation in machine learning concepts and techniques
- Learn how to implement machine learning algorithms using Python libraries such as Scikit-learn and TensorFlow
- Explore various techniques such as regression, clustering, and classification to solve real-world problems
Job Positions & Salaries of people who have taken this course might have
- Machine Learning Engineer
- USA: $112,000
- India: ₹1,200,000
- Spain: €45,000
- Data Scientist
- USA: $117,000
- India: ₹1,000,000
- Spain: €49,000
- Artificial Intelligence Engineer
- USA: $140,000
- India: ₹2,200,000
- Spain: €55,000
Related Topics for further study
- machine learning
- Python programming
- algorithm implementation
- regression techniques
- clustering techniques
Learning Outcomes
- Understand the fundamentals of machine learning
- Implement machine learning algorithms using Python libraries
- Apply various techniques to solve real-world problems
Prerequisites or good to have knowledge before taking this course
- Basic knowledge of Python programming
- Familiarity with linear algebra and calculus
Course Difficulty Level
IntermediateCourse Format
- Online self-paced course
- Video lectures and quizzes
- Hands-on programming assignments
Similar Courses
- Applied Machine Learning
- Data Science Essentials
- Data Science Methodology
Related Education Paths
- Machine Learning Engineer Certification
- Data Science Certification
- Artificial Intelligence Certification
Notable People in This Field
- Andrew Ng
- Fei-Fei Li
Related Books
Description
Este curso se sumerge en los conceptos básicos del aprendizaje automático mediante un lenguaje de programación accesible y conocido, Python.
Outline
- Introduction to Machine Learning
- ¡Bienvenida!
- Introducción a aprendizaje automático
- Python para aprendizaje automático
- Aprendizaje Supervisado y No Supervisado
- Introducción a aprendizaje automático
- Regresión
- Introducción a la Regresión
- Regresión Lineal Simple
- Evaluación del Modelo en Modelos de Regresión
- Evaluación de las Métricas en los Modelos de Regresión
- Regresión Lineal Multiple
- Regresión No-Lineal
- Regresión
- Clasificación
- Introducción a la Clasificación
- K-Vecinos más Próximos
- Métricas de Evaluación
- Introducción a los Arboles de Decisión
- Construyendo Arboles de Decisión
- Introducción a la Regresión Logística
- Regresión Logística y Regresión Lineal
- Entrenamiento de regresión logística
- Máquinas de Soporte Vectorial
- Clasificación
- Agrupación
- Introducción al Clustering
- Introducción a K-Medias
- Más sobre K-Medias
- Introducción a Clustering Jerárquico
- Más sobre Clustering Jerárquico
- DBSCAN
- Agrupación
- Sistemas de Recomendación
- Introducción a los Sistemas Recomendadores
- Sistemas Recomendadores Basados en el Contenido
- Filtrado Colaborativo
- Sistemas de Recomendación
- Proyecto Final
- OPCIONAL: Registarte para tener una Cuenta de Watson Studio
- OPCIONAL: Compartir los Notebooks en Watson Studio
- ¿Cómo hacer el proyecto final?
- Configuración del Proyecto Final
- ¡Felicitaciones!
- Insignia Digital de IBM
Summary of User Reviews
Learn machine learning with Python in this Coursera course. Students praise the course for its comprehensive approach and practical exercises, resulting in a high overall rating.Key Aspect Users Liked About This Course
The practical exercises in the course are particularly helpful in solidifying concepts and applying them in real-world scenarios.Pros from User Reviews
- Comprehensive approach covers a wide variety of machine learning topics
- Instructors are knowledgeable and engaging
- Practical exercises help reinforce concepts and apply them in real-world scenarios
- Flexible schedule allows for self-paced learning
- Course materials and resources are well-organized and easy to follow
Cons from User Reviews
- Some users feel that the course can be challenging for beginners without prior programming experience
- The course may require a significant time commitment to complete all assignments and exercises
- A few users have experienced technical difficulties with the course platform
- The course may not be suitable for those looking for a more theoretical or academic approach to machine learning
- The course does not cover some advanced machine learning techniques or algorithms