Aprendizaje Automático con Python

  • 0.0
Approx. 22 hours to complete

Course Summary

Learn how to implement machine learning algorithms using Python in this comprehensive course. Gain hands-on experience with various techniques and tools to solve real-world problems.

Key Learning Points

  • Gain a strong foundation in machine learning concepts and techniques
  • Learn how to implement machine learning algorithms using Python libraries such as Scikit-learn and TensorFlow
  • Explore various techniques such as regression, clustering, and classification to solve real-world problems

Job Positions & Salaries of people who have taken this course might have

  • Machine Learning Engineer
    • USA: $112,000
    • India: ₹1,200,000
    • Spain: €45,000
  • Data Scientist
    • USA: $117,000
    • India: ₹1,000,000
    • Spain: €49,000
  • Artificial Intelligence Engineer
    • USA: $140,000
    • India: ₹2,200,000
    • Spain: €55,000

Related Topics for further study


Learning Outcomes

  • Understand the fundamentals of machine learning
  • Implement machine learning algorithms using Python libraries
  • Apply various techniques to solve real-world problems

Prerequisites or good to have knowledge before taking this course

  • Basic knowledge of Python programming
  • Familiarity with linear algebra and calculus

Course Difficulty Level

Intermediate

Course Format

  • Online self-paced course
  • Video lectures and quizzes
  • Hands-on programming assignments

Similar Courses

  • Applied Machine Learning
  • Data Science Essentials
  • Data Science Methodology

Related Education Paths


Notable People in This Field

  • Andrew Ng
  • Fei-Fei Li

Related Books

Description

Este curso se sumerge en los conceptos básicos del aprendizaje automático mediante un lenguaje de programación accesible y conocido, Python.

Outline

  • Introduction to Machine Learning
  • ¡Bienvenida!
  • Introducción a aprendizaje automático
  • Python para aprendizaje automático
  • Aprendizaje Supervisado y No Supervisado
  • Introducción a aprendizaje automático
  • Regresión
  • Introducción a la Regresión
  • Regresión Lineal Simple
  • Evaluación del Modelo en Modelos de Regresión
  • Evaluación de las Métricas en los Modelos de Regresión
  • Regresión Lineal Multiple
  • Regresión No-Lineal
  • Regresión
  • Clasificación
  • Introducción a la Clasificación
  • K-Vecinos más Próximos
  • Métricas de Evaluación
  • Introducción a los Arboles de Decisión
  • Construyendo Arboles de Decisión
  • Introducción a la Regresión Logística
  • Regresión Logística y Regresión Lineal
  • Entrenamiento de regresión logística
  • Máquinas de Soporte Vectorial
  • Clasificación
  • Agrupación
  • Introducción al Clustering
  • Introducción a K-Medias
  • Más sobre K-Medias
  • Introducción a Clustering Jerárquico
  • Más sobre Clustering Jerárquico
  • DBSCAN
  • Agrupación
  • Sistemas de Recomendación
  • Introducción a los Sistemas Recomendadores
  • Sistemas Recomendadores Basados en el Contenido
  • Filtrado Colaborativo
  • Sistemas de Recomendación
  • Proyecto Final
  • OPCIONAL: Registarte para tener una Cuenta de Watson Studio
  • OPCIONAL: Compartir los Notebooks en Watson Studio
  • ¿Cómo hacer el proyecto final?
  • Configuración del Proyecto Final
  • ¡Felicitaciones!
  • Insignia Digital de IBM

Summary of User Reviews

Learn machine learning with Python in this Coursera course. Students praise the course for its comprehensive approach and practical exercises, resulting in a high overall rating.

Key Aspect Users Liked About This Course

The practical exercises in the course are particularly helpful in solidifying concepts and applying them in real-world scenarios.

Pros from User Reviews

  • Comprehensive approach covers a wide variety of machine learning topics
  • Instructors are knowledgeable and engaging
  • Practical exercises help reinforce concepts and apply them in real-world scenarios
  • Flexible schedule allows for self-paced learning
  • Course materials and resources are well-organized and easy to follow

Cons from User Reviews

  • Some users feel that the course can be challenging for beginners without prior programming experience
  • The course may require a significant time commitment to complete all assignments and exercises
  • A few users have experienced technical difficulties with the course platform
  • The course may not be suitable for those looking for a more theoretical or academic approach to machine learning
  • The course does not cover some advanced machine learning techniques or algorithms
Spanish
Available now
Approx. 22 hours to complete
SAEED AGHABOZORGI, Joseph Santarcangelo
IBM
Coursera

Instructor

Share
Saved Course list
Cancel
Get Course Update
Computer Courses