Mechanical Behavior of Materials, Part 3: Time Dependent Behavior and Failure
- 0.0
Brief Introduction
Explore materials from the atomic to the continuum level, and apply your learning to mechanics and engineering problems.
Description
All around us, engineers are creating materials whose properties are exactly tailored to their purpose. This course is the third of three in a series of mechanics courses from the Department of Materials Science and Engineering at MIT. Taken together, these courses provide similar content to the MIT subject 3.032: Mechanical Behavior of Materials.
The 3.032x series provides an introduction to the mechanical behavior of materials, from both the continuum and atomistic points of view. At the continuum level, we learn how forces and displacements translate into stress and strain distributions within the material. At the atomistic level, we learn the mechanisms that control the mechanical properties of materials. Examples are drawn from metals, ceramics, glasses, polymers, biomaterials, composites and cellular materials.
Part 3 covers viscoelasticity (behavior intermediate to that of an elastic solid and that of a viscous fluid), plasticity (permanent deformation), creep in crystalline materials (time dependent behavior), brittle fracture (rapid crack propagation) and fatigue (failure due to repeated loading of a material).
Knowledge
- Concepts and problem solving skills relating to viscoelasticity, plasticity, and high temperature creep of crystalline solids
- Concepts and problem solving skills relating to fracture, and fatigue
- The relationship between the behavior of materials at an atomistic level and thecontinuum response of materials